A new approach based on "soft statistics" to the nonlinear blind-deconvolution of unknown data channels
نویسندگان
چکیده
In this paper, we present a new nonlinear receiver for the blind deconvolution of intersymbol interference (ISI) impaired data. The proposed receiver achieves fast identification of an unknown transmission channel using only one channel estimator and requiring the computation of only the second-order conditional statistics of the baud-rate sampled received signal and the knowledge of the transmitted constellation. The main novelty of the proposed approach is that the receiver accomplishes fast channel-identification by using soft-statistics. In particular, the receiver consists of a symbol-by-symbol maximum a posteriori (SbS-MAP) detector that feeds a nonlinear Kalman-like channel estimator with the soft statistics constituted by the a posteriori probabilities (APPs) of the state sequence of the ISI channel. Several numerical results confirm that the proposed blind detector achieves the identification of nonminimum phase channels with deep spectral notches within 300 symbols, even at low signal-to-noise ratios (SNRs). Furthermore, an attractive feature of the proposed blind channel estimator is that it directly estimates the discrete-time impulse response of the unknown channel so that, in principle, any equalization technique for known channels may be performed after channel identification has been achieved.
منابع مشابه
An Approach to Blind Deconvolution Based on Second-order “soft” Statistics
In this paper we present a new blind equalizer that achieves identification of a channel by exploiting only second-order statistics of the observations. The novelty of the proposed approach is that the receiver accomplishes channel identification by using soft-statistics; roughly speaking, it consists of an Abend-Fritchman type [11] Maximum A Posteriori (MAP) equalizer that feeds a nonlinear Ka...
متن کاملLinear multichannel blind equalizers of nonlinear FIR Volterra channels
Truncated Volterra expansions model nonlinear systems encountered with satellite communications, magnetic recording channels, and physiological processes. A general approach for blind deconvolution of single-input multiple-output Volterra finite impulse response (FIR) systems is presented. It is shown that such nonlinear systems can be blindly equalized using only linear FIR filters. The approa...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملA Blind Hammerstein Diversity Combining Technique for Flat Fading Channels
Diversity combining techniques play an important role in combating the destructive effects of channel fading in wireless communication systems. In this work we present a blind diversity combining technique for Rayleigh flat fading channels based on Hammerstein type filters. We show that the performance of this technique is very close to ideal MRC system which is accepted as an optimum receiver ...
متن کاملBlind Decorrelation and Deconvolution Algorithm For Multiple Input Multiple Output System I theorem derivation
The problems of blind decorrelation and blind deconvolution have attracted considerable interest recently These two problems traditionally have been studied as two di erent subjects and a variety of algorithms have been proposed to solve them In this paper we consider these two problems jointly in the application of a multi sensor network and propose a new algorithm for them In our model the sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 49 شماره
صفحات -
تاریخ انتشار 2001